
The Decay of cay

Moritz Dauber & Jochen Lawrenz∗

August, 2023

Abstract

We revisit the ability of different versions of the consumption-wealth ratio (cay) to
predict stock market returns and show that forecasting power has declined over at least the
last decade up to the point that it is neither in-sample, out-of-sample, nor economically
significant. We uncover that the loss in predictability goes along with a structural shift in
the underlying cointegrating relationship. Over the past decades, the development of asset
wealth is increasingly detached from consumption, which makes it unlikely that a predictor
derived from the representative agent’s intertemporal budget constraint can capture stock
market behavior.
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1 Introduction

A basic tenet of neoclassical financial economics is that the representative agent maximizes
utility over consumption under some budget constraint. Following this logic and building on ideas
in Campbell and Mankiw (1989), Lettau and Ludvigson (2001) exploit the economic relations
of the intertemporal budget constraint between wealth, consumption and expected returns to
develop the consumption-wealth ratio (cay) as a predictor for stock market excess returns in
the time-series. However, although being theoretically appealing, it has received ambiguous
empirical support, where conflicting results are largely due to the stance, the researchers take
with respect to in-sample and out-of-sample tests.

In this paper, we revisit the forecasting ability of cay and offer three contributions: First, we
conduct comprehensive in-sample, out-of-sample, as well as economic significance tests on U.S.
post-war data and find a remarkable and sustained decline of the predictive power of cay during
(at least) the last decade. From the perspective of most recent data, cay appears to have lost
even its in-sample ability to predict stock market returns. We conclude that, independent of how
to assess predictability, cay does not reliably predict stock market returns. Second, we propose
two improvements for the construction of cay: On the one hand, we de-filter the consumption
time series to recover richer time variation, and on the other hand, we derive cay from the data
for the top-10% richest households in an attempt to better identify the marginal investor. We
find some modest improvements in forecasting power from our extensions, but document still
the same pattern of declining predictability in most recent times. Third, our analysis uncovers
that the declining predictive power of cay goes along with a structural shift in its presumed
cointegrating relationship. We find that the coefficient on wealth in the cointegrating vector
shows a sustained decline over at least the last three decades, both in terms of value and
significance up to the point that it ends up insignificant from the perspective of most recent
data. Furthermore, the econometric evidence to reject the null of no cointegration has weakened
substantially, so that there is currently no reason to believe that a stable cointegrating relation
exists in the first place. We argue that these structural shifts are largely responsible for the decay
in the forecasting ability of cay and explain more generally the strong discrepancy between the
in-sample (IS) and (strict) out-of-sample (OOS) performance of cay.

On the more general conceptual level, our recent evidence suggests that the theoretically
motivated belief that consumption and wealth is cointegrated because the representative agent
optimally adjusts consumption to future wealth expectations appears not well supported. In
contrast, in particular during the last decades, the development of wealth appears increasingly
detached from consumption data. In this respect, our results confirm and complement the
findings of Lustig et al. (2013), who estimated that only a tiny fraction of total wealth is due
to stock market wealth and therefore concluded that the time variation in wealth is largely
disconnected to aggregate stock market behavior.
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Even more than twenty years after its formulation in Lettau and Ludvigson (2001), the
assessment of the predictive ability of cay still tends to be somewhat ambiguous. While Guo
(2006), Guo et al. (2013), Hahn and Lee (2006), Kalotay et al. (2007), Della Corte et al. (2010),
and more recently Ren et al. (2014) and Lettau and Ludvigson (2019) confirm the strong and
robust forecasting power of cay, Avramov (2002) and later Welch and Goyal (2008) argue that
the construction of cay suffers from a ‘look-ahead bias’ when the cointegrating vector is estimated
using the full sample and pointed towards the weak out-of-sample performance when the test is
carried out under the assumption that only available information is used for prediction. Brennan
and Xia (2005) address the same ‘look-ahead bias’ and argue that a cointegrating relationship
between wealth and a simple time trend would generate similar (or even better) forecasting
results. The conflicting results are due to different conceptions of how to conduct OOS tests
for the residual of a cointegrated relationship, and more generally due to the substantial model
uncertainty for cointegration test as pointed out by e.g., Koop et al. (2008). While Avramov
(2002), Welch and Goyal (2008), and Brennan and Xia (2005) favor the perspective of a real-time
decision-maker and only allow for contemporaneous available information, Lettau and Ludvigson
(2001) and more explicitly Lettau and Ludvigson (2005b) do reply to this criticism by making
the strong case, that using only partial information to estimate the equilibrium cointegrating
vector is inappropriate because it neglects information that would have been available to the
decision-maker if the underlying theory is correct.

A second line of disagreement in the assessment of the forecasting power comes from the
debate between in-sample and out-of-sample tests. While it is generally believed that OOS
results are more reliable evidence for predictability, e.g., Inoue and Kilian (2005) are often
credited for showing that OOS is not necessarily superior and has rather low power to detect
predictability. So, given its strong in-sample evidence, weak OOS performance is not necessarily
a reason to dismiss the forecasting ability of cay. However, it is remarkable that cay tends to
display an unusually large discrepancy between IS and (strict) OOS performance as documented
by e.g. Welch and Goyal (2008).

Finally, a third, well-established approach in the literature is to assess the economic
performance of forecasts by estimating the utility gain of a mean-variance investor in the
spirit of Fleming et al. (2001) and Campbell and Thompson (2008). In this sense, Andrade
et al. (2006) and Della Corte et al. (2010) provide evidence which shows that, despite its poor
statistical OOS results, cay performs well in economic terms.

In our analysis, we take a comprehensive look at the performance of cay from all three
perspectives with U.S. post-war data from 1952:Q1 up to 2019:Q4. We deliberately end our
sample for baseline results before the Covid-19 episode and provide separate analyses which
extend up to 2022:Q4. Our main finding is to show that independent of the way how you
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look at the assessment of cay, it shows a remarkable decline over at least the last decade to
end up insignificant from the perspective of IS, OOS and economic performance. Figure 1
illustrates a preview on our main point. In the lower panel, we show (in-sample) predictive
regression coefficients and utility gains (in bp) for the original cay-measure. Beginning with
at least 2010 both performance metrics decline to end up insignificant from the perspective
of 2019:Q4, which is in line with the recent evidence of Goyal et al. (2021). In the upper

Figure 1: The upper panel shows consumption (blue), aggregate wealth (red) and labor income (green) in
normalized detrended log levels. This means that the log series are detrended assuming a simple linear time
trend and afterwards are normalized to start at zero.
The lower panel shows the coefficient estimate of cayt (solid line) from quarterly forecasts of excess returns on the
CRSP NYSE/NYSE MKT/NASDAQ/Arca Value-Weighted Market Index, accompanied by its 90%-confidence
band as the dotted lines. The dashed line represents the risk-adjusted abnormal return of the CAY-strategy
against the AVE-strategy. Fore more details see Section 4. The sample period is 1952:1-2019:4.

panel, we display the input data to the construction of cay which is the log of consumption,
income and asset wealth after removing the deterministic time trend. We do observe a strong
comovement between consumption and income over the entire sample. In contrast, asset wealth
displays a strongly detached development from consumption and income, which is particularly
pronounced since around 2000, and manifests itself as a structural shift in the cointegrating
relationship where the coefficient on asset wealth declines steadily. Taking the claim of Lettau
and Ludvigson (2005b) at face value to use the most comprehensive (i.e. most recent) data set
for the estimation of the equilibrium leaves us with a time series for cay that would have never
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displayed forecasting power neither in- nor out-of-sample.

Given that cay has a rigorous theoretical foundation, the current disappointing empirical
evidence also casts doubt if it is a sufficient description of agents’ behavior. Recall that cay

is supposed to be predictive due to the optimizing behavior of the representative agent who
adjusts consumption to expected wealth changes. In an attempt to still reconcile theory with
observations, we propose two novel approaches to construct cay. Our first extension is guided
towards better identifying the representative agent. Against the background of significant
wealth and income inequality, it is debatable if market aggregates are able to represent the
behavior of the representative investor. Thus, inspired by recent work of Lettau et al. (2019),
who propose capital share risk as a surprisingly successful proxy for the pricing kernel, we
construct a measure of cay from the data of the 10% richest households. Given that rich
households tend to hold a disproportionally large fraction of stock market wealth relative
to their consumption, we hypothesize that cay should be more predictive if the theory is
appropriate.1

The second extension builds upon the insights from Savov (2011) and Kroencke (2017). Both
contributions address the well-known equity premium puzzle, which can be restated as the fact
that the consumption time series displays too little variation. While Savov (2011) uses garbage
data to recover richer time variation, Kroencke (2017) removes the filtering procedure which is
implicit in the construction of the official data release. Since Savov (2011) as well as Kroencke
(2017) show that their procedure allows to better fit risk premia, we hypothesize that their
approach may also benefit the forecasting ability of cay.

We find that unfiltering cay does not improve or even worsens the predictive performance.
The time variation which can be recovered from the procedure has too high frequency as to
be able to favorably impact the forecasts. With respect to the top-10% cay, we do find some
modest improvements. While being almost identical to the original cay-measure up to around
2000, we find a slightly better predictive performance post-2000, yielding some evidence that
the increasing wealth inequality does impact the forecasting ability. However, although the
decline in cay appears less pronounced, we still find the same decaying pattern up to the point
that the top-10% cay is (in-sample) only significant at the the 10%-level from most recent data.

Our assessment of the predictive power of cay is clearly in contrast to the original work
of Lettau and Ludvigson (2001) as well as their update in Lettau and Ludvigson (2019). It
is also in contrast to the earlier works of Hahn and Lee (2006), Della Corte et al. (2010) and

1Lustig et al. (2013) estimate that in the market aggregate, stock market wealth represents only 1% of total
wealth. It is reasonable to expect that among rich households, this fraction will be substantially larger.
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others, while being in line with the most recent assessment of Goyal et al. (2021)2. Therefore,
it is instructive to analyze in more detail the origin of the discrepancy of earlier results to our
current assessment. This analysis focuses on the stability of the cointegrating relationship and
shows that – as mentioned above – sustained shifts have taken place, in particular with respect
to the coefficients of the cointegrating vector. A related aspect is the role of a deterministic time
trend in the cointegration equation. Brennan and Xia (2005) and later Hahn and Lee (2006) did
already point towards the potentially critical role of an omitted time trend. In particular, Hahn
and Lee (2006) have shown that the performance of cay is biased upwards when the cointegrating
relationship is restricted to have no time trend. Although substantially smaller, their results still
find forecasting power for cay when estimated with a time trend. Our findings are even stronger,
in that cay is actually uninformative over the entire sample when estimated with a time trend.
However, we point out that from the perspective of most recent data, the inclusion of a time
trend is econometrically no longer justified and rather confirms the original assumption of Lettau
and Ludvigson (2001). In this sense, we document some irony of history. Up until around 2010,
the original cay measure displayed stable forecasting power, but was subject to the potential
criticism that it earned its predictability due to the omitted (but statistically significant) time
trend. Since 2010, the data does support the assumption of omitting a time trend, but cay no
longer displays forecasting power.

A further implication of the sustained shift in the cointegrating vector is the fact that cay

tends to be always biased downwards in the most recent observations, which follows from the
fact that the fixed coefficient estimates are estimated over the full observations and will therefore
overweigh asset wealth in the latest periods. This finding is able to explain the strong discrepancy
between the in-sample and OOS performance results of cay.

Finally, we document that the inclusion of the Covid-19 episode, i.e., the extension of the data
sample to 2022:Q4 would be further evidence for the instability of the cointegrating relationship,
but which is hard to reconcile with the idea of cay, since consumption dropped due to pandemic-
induced shutdowns, while income soared due to massive government transfer payments.

We complement our main analysis with comprehensive robustness checks. We test various
cointegration regression approaches. We use PCE consumption data instead of the more common
NDS data. We implement the improvement suggested by Sousa (2010) to disentangle financial
wealth, which they labelled cday. We follow the suggestion of Guo (2006) to augment the
predictive regression by stock market volatility to avoid an omitted variable bias. We also take
up the argument by Lettau and Ludvigson (2005a) and Lettau and Ludvigson (2005b) to avoid
estimating the cointegrating relationship and rather conduct a multivariate regression. None of
these tests change our main conclusions that the last decades have seen a sustained decay of
cay.

2Goyal et al. (2021) assess a large number of predictors and do not analyze or discuss their negative evidence
for cay in any detail.
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The remainder of the article is structured as follows: Section 2 recaps the economic theory
behind the consumption-wealth ratio and the estimation of cay. Section 3 continues in describing
our data and the three different specifications of cay before presenting the results from the
estimation of the cointegrating relationship(s). Section 4 documents the decay of cay from an
in-sample, out-of-sample and economic perspective. In Section 5, we address the structural shift
in the cointegrating relationship including the role of a deterministic time trend as well as the
impact of the Covid-19 pandemic on cay. Section 6 provides various robustness tests before
Section 7 concludes.

2 The consumption-wealth ratio

2.1 Theoretical background

Campbell and Mankiw (1989) assume a representative agent economy in which the con-
sumer’s intertemporal budget constraint is given by

Wt+1 = Rw,t+1 (Wt − Ct) (1)

where Wt denotes aggregate wealth, Ct denotes aggregate consumption and Rw,t+1 is the return
on aggregate wealth between periods t and t+ 1. Under the assumption that the consumption-
wealth ratio is stationary, Campbell and Mankiw (1989) show that via a first-order Taylor series
expansion

∆wt−1 ≈ k + rw,t+1 + (1− 1/ρ)(ct − wt) (2)

where ∆ denotes the difference operator, ct log consumption, wt log wealth, rw,t = log(1+Rw,t)

the log return on aggregate wealth, k a constant and ρ the steady-state value of invested wealth
to total wealth, i.e., (W − C)/W . Using the fact that

∆wt+1 = ∆ct+1 + (ct − wt)− (ct+1 − wt+1),

transforms (2) into

ct − wt ≈ ρ(rw,t+1 −∆ct+1) + ρ(ct+1 − wt+1) + ρk. (3)

After omitting the unimportant constant k, solving (3) forward and imposing the transversality
condition that limi→∞ ρ(ct+i−wt+i) = 0 together with taking expectations on both sides of the
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equation, Campbell and Mankiw (1989) derive

ct − wt = Et

∞∑
i=1

ρi(rw,t+i −∆ct+i). (4)

This means, the consumption-wealth ratio is a function of future expected returns and future
expected consumption growth and must thus forecast either one of them or both. This crucial
linkage allows us to infer expectations on future returns from the consumption-wealth ratio using
observable consumption data.

A direct observation of the consumption-wealth ratio, however, is impossible due to the
inability to observe the component of human capital, Ht, in total wealth. We therefore follow
the approach by Lettau and Ludvigson (2001) of using log labor income, yt, as a proxy for
the nonstationary component of log human capital, ht. This means we first approximate Wt =

At +Ht via

wt ≈ αaat + (1− αa)ht (5)

where at denotes log asset wealth and αa represents the average share of asset holdings in total
wealth, i.e., A/W . We then replace ht with κ+yt+zt where κ denotes an unimportant constant
and zt is a mean zero stationary random variable. Together with the approximation

rw,t ≈ αara,t + (1− αa)rh,t (6)

for log returns by Campbell (1996), this transforms (4) into

ct − αaat − (1− αa)yt = Et

∞∑
i=1

ρi ([αara,t+i + (1− αa)rh,t+i]−∆ct+i)

+ (1− αa)zt.

(7)

Since all terms on the right-hand side are assumed to be stationary, the left-hand side must also
be stationary and thus implying that ct, at and yt must be cointegrated. Hence, the left-hand
side gives us the deviation in the common trend between consumption, aggregate wealth, and
labor income, which, according to Lettau and Ludvigson (2001), defines cay as

cayt := ct − αaat − (1− αa)yt. (8)

From (7) we get that as long as expected future returns on human capital, rh,t+i, and consump-
tion growth, ∆ct+i, are not too variable, or at least highly correlated with expected returns on
assets, cayt, as a proxy for the consumption-wealth ratio, ct − wt, should be a good predictor
for market expectations on future asset returns, ra,t+i.
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Since αa is unobservable, the next step will be to estimate the cointegrating relationship
between consumption, aggregate wealth and labor income, in order to get a proxy for cay.

2.2 Estimation of the cointegrating relationship

Under the assumption of the presence of a (single) cointegrating relationship between given
consumption, wealth and labor income series, our goal is to estimate the cointegrating parame-
ters, i.e., to obtain an estimate for αa from equation (8).

Our baseline method is Stock and Watson’s (1993) dynamic least squares (DLS) technique,
also applied by Lettau and Ludvigson (2001), that adds leads and lags of the first differences
in aggregate wealth and labor income to an otherwise normal ordinary least squares (OLS)
regression of consumption on aggregate wealth and labor income. We follow Lettau and Ludvig-
son (2001) in taking eight leads and lags into account but we also find that the exact number,
between one and eight, does not impact the results substantially. Thus, we estimate

ct = α+ βaat + βyyt +
8∑

i=−8

b1,i∆at−i +
8∑

i=−8

b2,i∆yt−i + εt (9)

where ∆ again denotes the difference operator.
The main advantage of the DLS specification over the simple OLS specification is that it

eliminates the effects of regressor endogeneity. Despite that, Lettau and Ludvigson (2001) point
out that the estimates of βa and βy will be consistent, even though the error term εt will typically
be correlated with at and yt. This comes from the fact that OLS estimates of cointegrating
parameters converge to the true parameters at a faster rate than in normal estimations (Stock
(1987)). Despite using the DLS estimates throughout the paper, we also report the cointegrating
parameters and forecasts based on them for other estimation methods, next to OLS including
Park’s (1992) canonical cointegration regression (CCR) and Phillips and Hansen’s (1990) fully
modified estimator (FME), in Appendix A.1.

With the estimated parameters β̂a and β̂y from (9), we then define

ĉayt := ct − β̂aat − β̂yyt, (10)

as the ’residual’ from the cointegrating regression. It is the estimated trend deviation in the
long-run relationship between consumption, aggregate wealth and labor income and by that a
proxy for the consumption-wealth ratio.

Our baseline measure of consumption is nondurables and services excluding clothing and
footwear (NDS) from the NIPA tables by the BEA. The idea behind using NDS instead of total
personal consumption expenditures (PCE) is, that the former more accurately captures the
flow of consumption, whereas expenditures on durable goods that are contained in PCE are
rather to be seen as additions and replacements to existing stock. Lettau and Ludvigson (2001)
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follow Blinder et al. (1985) and Galí (1990) in assuming that total consumption, i.e., PCE, is
a constant multiple of NDS. This allows them to assume a constant scale factor between log
total consumption and log NDS, leading to a valid cointegrating relationship between NDS
consumption, aggregate wealth and labor income. While we follow this approach and use NDS
as our measure of consumption throughout the paper, it is noteworthy that in a revised note,
Lettau and Ludvigson (2019) show that the assumption of PCE being a constant multiple of
NDS is no longer valid. In lack of any other suitable measure for the flow of consumption,
they conclude that under certain assumptions, PCE has replaced NDS as the more appropriate
consumption measure. We address this issue in Section 6 and show that our main results are
not substantially impacted by what measure of consumption is used.

2.3 Data

Before estimating ĉayt, we briefly describe our data sources. A detailed description of how
each series is derived can be found in Appendix A.2. Unless otherwise noted, we use quarterly
samples spanning the period of 1952:1-2019:4.

All data on consumption and income are taken from the NIPA tables by the Bureau of
Economic Analysis (BEA). The wealth series come from the Financial Accounts publication by
the Board of Governors of the Federal Reserve System (FED).

The data on income and wealth inequality come from the World Inequality Database (WID).
Following Lettau et al. (2019), our measure for the labor share is the labor share of the nonfarm
business sector by the Bureau of Labor Statistics (BLS).

The macroeconomic uncertainty measure, used to unfilter the NIPA consumption as de-
scribed in Kroencke (2017), is taken from Sydney Ludvigson’s website. Garbage is the municipal
solid waste (MSW) series by the Environmental Protection Agency (EPA) as in Savov (2011).

Asset returns are calculated with the CRSP NYSE/NYSE MKT/NASDAQ/Arca Value-
Weighted Market Index provided by the Center for Research in Security Prices (CRSP). We
refer to this index as the market portfolio. Interest rates are collected from the Board of
Governors of the Federal Reserve System’s H.15 Selected Interest Rates publication. Our proxy
for the risk-free rate is the 3-Month Treasury Bill Secondary Market Rate.

3 Alternative specifications of cay

The previous section outlined the general theory underlying cay and we will present empir-
ical results in Section 4. Before getting there, this section will introduce two methodological
improvements over the baseline specification of Lettau and Ludvigson (2001). First, we dis-
cuss how to construct cay from data on the wealthiest households, and second, we de-filter the
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consumption time series to reconstruct richer time variation.

3.1 Consumption-wealth ratio for the 10% richest household

The basic rationale behind cay is derived from the representative agent’s intertemporal bud-
get constraint. In the standard empirical implementation, cay is estimated from total consump-
tion flow and aggregate wealth. However, in contrast to consumption, the distribution of asset
wealth is strongly unequal due to limited capital market participation. Lettau et al. (2019),
e.g., report that while the raw stock market participation rate has increased from 31.7% in 1989
to a more or less constant level of around 50% since the end of the 1990s, the wealth-weighted
participation rate remains at far lower levels of only 20.2% most recently in 2013. Even more
importantly, they show that the top 10% of households along the wealth distribution own more
than 70% of stock wealth among stockowners, and even around 85% among all households.
Thus, a substantial part of total consumption is contributed from households that do not own
any sizeable financial wealth and therefore their intertemporal budget constraint should not
materially be affected by expectations over future capital market returns.
Thus, guided by recent work of Lettau et al. (2019), who propose capital share risk as a sur-
prisingly successful proxy for the pricing kernel, we construct a measure of cay from the data of
the 10% richest households by regressing the income share of the top 10% wealthiest households
onto the capital share, in order to account for only systematic risk in the variation of the income
share as some of it across different percentile groups may be idiosyncratic and can be diversified
away. We apply the same procedure to the wealth share of the top 10% wealthiest households.
Our original series for the income and wealth share are on an annual basis and are converted to a
quarterly frequency by a simple linear interpolation between yearly fourth quarter observations.
The capital share series is quarterly.

For our sample from 1952:1-2019:4, the two regressions of the income and wealth share on
the capital share are described by

Xtop10
t

Xt
= αX + βX KSt + εt, with X ∈ {A, Y }. (11)

Atop10
t /At and Y top10

t /Yt denote the wealth and income share of the top 10% wealthiest house-
holds, respectively, and KSt is the capital share. The capital share is defined as 1− LSt where
LSt is the labor share.

The coefficients for both specifications of (11) can be found in Table 1.
In a second step, we then multiply our consumption and labor income series in levels with

the fitted values from the income share regression on the capital share, and the aggregate wealth
series in levels with the fitted values from the wealth share regression on the capital share. While
this should give us some reasonable proxies for the respective series for the top 10% wealthiest
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X ∈ {A, Y } Y top10
t /Yt Atop10

t /At

α̂X 0.012 (0.731) 0.534∗∗∗ (30.019)

β̂X 1.147∗∗∗ (23.700) 0.434∗∗∗ (8.016)

R2 0.675 0.192

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Coefficient estimates and R2 statistics of the income and wealth share regressed on the capital share.
The normal OLS t-statistics are reported in parentheses. The sample period is 1952:1-2019:4.

households, we have to mention that especially multiplying the consumption and income series
with the same fitted values has to be treated with care. A richer data foundation in the future
is therefore likely to generate stronger results. All of this is done in an attempt to account for
the fact that the wealthier households finance their consumption primarily through assets and
not like the majority of households through labor income, implying that the marginal investor’s
consumption, asset wealth and labor income should predict future asset returns more accurately
than their aggregated counterparts. We will refer to this as the top-10% specification and denote
the corresponding cay by caytop10.

3.2 Consumption-wealth ratio from unfiltering consumption data

Our second alternative for constructing cay is inspired by the observations of Savov (2011)
and Kroencke (2017) that consumption data derived from the NIPA tables by the BEA displays
comparatively low time variation. Savov (2011) as well as Kroencke (2017) focus on the
explanation of the classical equity premium puzzle of Mehra and Prescott (1985), which can
be restated as the problem that consumption growth volatility is too low for reasonable risk
aversion parameters. Savov (2011) resolves the ’puzzle’ by recovering richer time variation from
data on municipal solid waste (MSW), or simply garbage. In contrast, Kroencke (2017) argues
that the BEA employs a filtering process to their raw consumption data before publishing the
NIPA tables. He shows how to undo the filtering process in order to recover the original, more
volatile consumption series. We closely follow his approach and undo the filtering by the BEA
with the help of the uncertainty measure of Jurado et al. (2015). We will refer to this as the
unfiltered specification and the corresponding version of cay is denoted by cayunfil. In this case,
our sample is still quarterly but starts not until 1960:3. We spare the details of the filtering
model here as they are identical to the method described by Kroencke (2017), except that we
specifically use what he calls ‘JLN unfilter’, based on the uncertainty measure of Jurado et al.
(2015), because it is as model-free as possible and uses a wide range of macroeconomic indicators.
Despite the fact that this may not precisely reflect consumption uncertainty, we still consider it
to be advantageous over the use of a GARCH-model as the main model of consumption volatility.
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3.3 Estimation results

We now estimate the cointegration regression (9) discussed in Section 2 for the baseline and
our two alternative cay specifications and report the results in Table 2. Note that due to data
availability, cayunfil can only be estimated from 1960:3 onwards.

1952:1-2019:4 1960:3-2019:4

baseline top-10% baseline top-10% unfiltered

β̂a 0.035 0.097∗∗∗ -0.064 0.082 -0.099
(0.987) (2.812) (-1.041) (1.385) (-1.559)

β̂y 0.906∗∗∗ 0.855∗∗∗ 1.053∗∗∗ 0.873∗∗∗ 1.097∗∗∗
(23.950) (25.486) (12.746) (13.049) (12.753)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Cointegrating parameter estimates for our baseline, top-10% and unfiltered specification for different
sample periods specified in the first line of the table. Newey and West (1987) corrected t-statistics appear in
parentheses.

When comparing the cointegrating parameters among the different specifications, we see
that in the sample from 1952:1 (left columns), the coefficient estimates for the baseline and
the top-10% specification are close to each other, although it is noteworthy that the coefficient
for aggregate wealth (β̂a) is significant in the latter compared to a t-statistic below one for the
baseline case. The comparison with cayunfil can only be done within the shorter sample from
1960:3 (right columns) and here we actually find that β̂a is not significant in any of the three
specifications.

With the cointegrating parameters from Table 2, we can now estimate the corresponding cays
according to (10). Summary statistics, including the log excess return of the market portfolio,
rt−rf,t, where rt denotes the log return of the market portfolio and rf,t denotes the log risk-free
rate, can be found in Table 3.

Figure 2 shows all three cays for their respective full sample and in units of standard devi-
ation, together with log excess returns. Overall the three different cays behave rather similar,
especially the one for the baseline and the top-10% specification. The unfiltered cay is somewhat
more different but which is mainly due to the different sample period. In general, we see that
in the past, negative developments in cay often foreshadowed negative excess returns, e.g., the
oil crisis in the 1970s or the bear market after the burst of the dotcom bubble. Other events,
such as the 1987 stock market crash, but also the financial crisis of 2007/08, however, were not
accompanied by a foregone decline in cay. More recently, cay has entered an ongoing negative
development since the financial crisis, albeit mostly positive returns during the last decade.

Especially the negative development of cay during the last decade is in sharp contrast to the
positive stock market development during that time span. This observation is already a preview
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ĉayt ĉay
top10
t ĉay

unfil
t rt − rf,t

Panel A: Univariate summary statistics

Mean 0.612 0.281 0.329 0.015
Standard deviation 0.023 0.022 0.030 0.083
Autocorrelation 0.946 0.931 0.914 0.065

Panel B: Correlation matrix

ĉayt 1.000 0.956 0.819 0.047
ĉay

top10
t 1.000 0.726 0.055

ĉay
unfil
t 1.000 0.068

rt − rf,t 1.000

Table 3: Summary statistics for ĉayt, ĉay
top10
t , ĉayunfil

t and quarterly excess returns.
The sample period is 1952:1-2019:4, except for ĉayunfil

t it is 1960:3-2019:4.

Figure 2: The plot shows ĉayt (black), ĉaytop10
t (blue) and ĉayunfil

t (orange). The gray curve represents log excess
returns, rt − rf,t. The gray shaded areas mark NBER recessions. The sample period is 1952:1-2019:4, except for
cayunfil

t it is 1960:3-2019:4.

on the weaker forecasting ability, which we will investigate in closer detail in the upcoming
section.
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4 Empirical forecasting results

4.1 Predictive regressions

After having estimated the cointegrating parameters of our various cays, we are now able to
run predictive regressions of H-period ahead excess returns on cay, i.e. we estimate by OLS the
model,

r̃t,H = α+ γ ĉayt + εt,H (12)

where r̃t,H = rt+1−rf,t+1+· · ·+rt+H−rf,t+H . In Table 4, we report the results for horizons up to
five years. Even though we already employ the commonly used Newey and West (1987) standard

Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉayt 0.240 0.467 0.813 1.537 2.152 2.970 3.520
(1.079) (1.060) (0.692) (0.703) (0.662) (0.965) (0.991)
[0.001] [0.004] [0.008] [0.019] [0.030] [0.050] [0.055]

ĉay
top10
t 0.398∗ 0.777∗ 1.482 2.889 3.817 4.968∗∗ 5.592∗

(1.762) (1.744) (1.290) (1.517) (1.629) (2.286) (1.914)
[0.007] [0.015] [0.031] [0.066] [0.086] [0.123] [0.121]

ĉay
unfil
t 0.023 -0.012 -0.245 -0.594 -0.599 -0.550 -0.875

(0.127) (-0.036) (-0.304) (-0.459) (.0.307) (-0.258) (.0.394)
[−0.004] [−0.004] [−0.002] [0.002] [0.000] [−0.001] [0.002]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: The table reports forecasting regression estimates for ĉayt, ĉay
top10
t and ĉayunfil

t . Forecasts span different
horizons from one quarter up to five years. Newey and West (1987) corrected t-statistics appear in parentheses
and adjusted R2 statistics in square brackets. The sample period is 1952:1-2019:4, except for ĉayunfil

t it is 1960:3-
2019:4.

errors, we emphasize the importance of being careful with long-horizon predictions, as recently
elaborated in Kostakis et al. (2023). To avoid any overlapping problems and circumvent this
issue, we will focus on one-quarter ahead forecasts in the remainder of this paper unless stated
otherwise. In principal, (7) also allows for the possibility of cay to predict future consumption
growth. In Appendix A.3, we present evidence that this is still not the case even though the
predictability of asset returns has weakened over time.

The results displayed in Table 4 are striking. At the 1%-significance level, we find none of
the cay versions over any horizon to be significant predictors. The comparatively best predictor
turns out to be ĉaytop10t , for which we at least get significance at the 5% or 10% level at horizons
of four and five years. The adjusted R2 statistics are also well below one percent for a one
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quarter horizon. These results are in sharp contrast to findings in prior literature. For example,
Lettau and Ludvigson (2001) reported a coefficient estimate of 2.165 with a t-statistic of over
three and an adjusted R2 of 9% for a sample period from 1952:4-1998:3. Other papers (e.g.,
Guo (2006), Hahn and Lee (2006), Della Corte et al. (2010), Sousa (2010), Guo et al. (2013))
confirmed these strongly significant findings for different sample periods. Lettau and Ludvigson
(2001) also concluded that the impact of a one-standard deviation rise in ĉayt is economically
large with expected excess returns going up by about 220 basis points, roughly a nine percent
increase at an annual rate. With a current standard deviation of 0.023, we only get an increase
of about 56 basis points for ĉayt, which is not even significant.

Taken together, the results lead us to conclude that the predictive ability of cay has fun-
damentally weakened over the last roughly 15 years. We investigate this apparent decay more
closely from an in-sample, out-of-sample and economic perspective in the following subsections.

4.2 The decay in-sample

Whenever we deal with variables as predictors for asset returns, an important question
is whether the forecasts are performed in-sample or out-of-sample. At first sight, one might
think that using only past values of cay to predict future excess returns is a true out-of-sample
forecast. However, Lettau and Ludvigson (2001) themselves, as well as others (e.g., Brennan and
Xia (2005)), have pointed out that for the estimation of the cointegrating parameters used to
construct ĉayt, the use of the full sample introduces somewhat of a ‘look-ahead bias’. Therefore,
the forecasts we presented above are rather to be labeled as in-sample forecasts. Nonetheless, we
can also re-estimate ĉayt, and its alterations, each quarter in order to sequentially update the
forecast regression and to see how the predictive ability varies over time. We do so beginning no
earlier than in the first quarter of 1985 to have a sufficiently large sample from which to estimate
the first set of cointegrating parameters.

The results of this exercise are presented in Figure 3. The upper plot shows the coefficient
estimates for our various cays together with their 90%-confidence intervals. For the top-10% and
unfiltered specification, it took a little longer to reach significant levels but from the late 1980s
on, all three cays have been strong predictors for next quarter’s excess returns. They stayed
more or less on their respective levels for roughly 15 years, before peaking in 2002:3 and starting
to decay afterwards. For the baseline and unfiltered specification, this decay is somewhat more
pronounced than for the top-10% specification, but in general all three exhibit a significant
decline towards the levels we already observed in Table 4. While the unfiltered forecasts reached
insignificant levels already around 2010, it took until 2015 for the baseline forecasts to do the
same.

The bottom plot of Figure 3 shows the economic impact in terms of basis points (left axis,
solid lines) given a one standard deviation increase in cay as well as the corresponding adjusted
R2 statistics (right axis, dashed lines). Both measures exhibit the same decay as the coefficient
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Figure 3: Both plots show results from quarterly re-estimated one-quarter ahead forecast regressions of excess
returns on ĉayt (black), ĉaytop10

t (blue) and ĉayunfil
t (orange). The upper plot represents the coefficient estimates

as the solid lines accompanied by their respective 90%-confidence band based on Newey and West (1987) standard
errors as the dashed lines. The bottom plot shows the impact of a one-standard deviation increase in cay on
one-quarter ahead excess returns in basis points as the solid lines on the left axis and the adjusted R2 statistics
on the right axis. The sample period is 1952:1-2019:4, except for cayunfil

t it is 1960:3-2019:4.

estimate itself. From levels of well above 200 basis points in the early 2000s, the impact has
weakened to 56, 88 and 7 basis points for our three specifications, respectively. In a very similar
manner, the R2 statistics have declined from more than 6% to levels below 1% already seen in
Table 4. The difference to the 9% that Lettau and Ludvigson (2001) found can be attributed to
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revisions in the underlying series from the BEA.
Altogether, Figure 3 makes clearly visible what we already suspected when comparing our

results to previous findings from others. The decay of cay has been an ongoing development for
at least the last decade.

4.3 The decay out-of-sample

After having seen the decay of cay in-sample above, we now turn our attention towards
changes in the predictive power of cay out-of-sample. In their seminal paper, Welch and Goyal
(2008) assess the forecasting abilities of excess returns for various variables, including cay. While
their models make annual predictions, we stick with our quarterly frequency. Aside from that
obvious difference, we follow their approach in measuring the in-sample (IS) and out-of-sample
(OOS) performance against two simple mean models. For the IS performance, we take the
full sample mean from Table 3 as a prediction, whereas for the OOS performance, we compute
prevailing historical means based on the data available up to that point in time. An intuitive
way to then evaluate the performance of our cay-models against their respective mean models,
is given by taking the difference of the sum of squared errors (SSE) over time. For a negative
difference between the mean model and the cay-model, we have a worse performance of the cay-
model and vice versa. At the same time an increase in this difference means a better performance
of the cay-model in that specific quarter.

We allow a 15-year training period for the out-of-sample forecasts and report results in
Figure 4. We can confirm the findings of Welch and Goyal (2008) that it was mainly the oil
shock that accounts for most of the positive in-sample performance of cay. Aside from that,
we also find that the OOS performance of cay is clearly worse than the prevailing historical
mean model. What is more important for us, however, is that we can again clearly see the
decay of cay setting in in the early 2000s for all three specifications, further worsening their
OOS forecasting ability and bringing them to new lows by the end of 2019. In line with our
IS findings, we again see that the top-10% specification performs better than the baseline and
unfiltered specification. Nevertheless, it still cannot match its IS counterpart and has lost its
advantage over the mean model during its recent decay. It is thus not only a feature of the IS
estimation that the forecasting power of cay has ceased recently, but also of its OOS evidence.
Together, this means that from a statistical point of view, the relevance of cay has decreased
substantially to non-significant levels recently. Apart from that, one can ask if there is still
some economic significance left that could be exploited in terms of a trading strategy based on
cay-forecasts. This is precisely what we will investigate next.
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Figure 4: The plots show the OOS performance of our three cay specifications. In the top we have the baseline, in
the middle the top-10%, and in the bottom the unfiltered specification. The solid lines represent the difference in
sum of squared errors between a prevailing mean model and OOS forecasts based on an recursively updated cay.
The blue shaded area marks the 95% confidence band based on OOS-t critical values from McCracken (2007).
The dotted line is the respective IS counterpart representing the difference in sum of squared errors between a full
sample mean model and IS forecasts estimated using the full available sample at that time. The sample periods
are as in Table 2.

4.4 The decay in economic significance

After having seen the undeniable decay of cay in statistical terms, we now turn our attention
towards a more economic assessment of cay and ask whether a trading strategy based on cay-
forecasts would have made an investor better off over time than simple mean-investing.

For that, we mainly follow Della Corte et al. (2010) in assuming a mean-variance investor
who rebuilds her portfolio on a quarterly basis. This means she can allocate her wealth between
a risk-free asset, here represented by the interest rate of 3-month U.S. T-bills, and a risky asset,
represented by our market portfolio based on the CRSP NYSE/NYSE MKT/NASDAQ/Arca
Value-Weighted Market Index. She then puts a weight of

wt =
1

λ

Et[rt+1 − rf,t+1]

V art[rt+1 − rf,t+1]
(13)

on the risky asset and a weight of 1 − wt on the risk-free asset. We follow Campbell and
Thompson (2008) in assuming a relative risk aversion (RRA) coefficient, λ, of three. Further,
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we do not allow for short-selling of either asset and thus restrict the weights to be in the interval
[0, 1]. In cases for which wt > 1, we set wt = 1 and for wt < 0 we set wt = 0, respectively.
In particular, this means that for a negative expected excess return in the next period, i.e.,
Et[rt+1 − rf,t+1] < 0, our investor will invest only in the risk-free asset.

We compare two trading strategies. The benchmark is labelled average-strategy (AVE)
where forecasts for the next quarter are based on a prevailing historical mean. Our cay-strategy
(CAY) uses data available up to the respective quarter to build a one-quarter ahead forecast
based on the estimated trend deviation measure ĉayt.

We then evaluate both strategies using two different performance measures. The first one
is the the manipulation-proof risk-adjusted abnormal return, θ, from Goetzmann et al. (2007),
that essentially measures a portfolio’s excess premium after adjusting for risk. It is defined as

θ =
1

1− λ

log
 1

T

T−1∑
t=0

(
RCAY

p,t+1

Rf,t+1

)1−λ
− log

 1

T

T−1∑
t=0

(
RAVE

p,t+1

Rf,t+1

)1−λ


where Rp,t+1 = Rf,t+1 + wt(rt+1 − rf,t+1) is a portfolio’s gross return and Rf,t = 1 + rf,t is the
gross risk-free rate. A positive value of θ then indicates that the CAY-strategy would have been
the better choice for an investor after adjusting for risk.

As a second metric, we also assess the performance fee, ϕ, which can be interpreted as the
maximum performance fee a risk-averse investor would be willing to pay to switch from the AVE
to the CAY-strategy. For that, we assume a quadratic utility of the form

U(Rp) = U
(
{Rp,t+1}t=T−1

t=0

)
=

1

T

T−1∑
t=0

(
Rp,t+1 −

λ

2(1 + λ)
R2

p,t+1

)
,

following West et al. (1993) and Fleming et al. (2001). The performance fee, ϕ, is then defined
via the equation

U
(
RCAY

p − ϕ
)
= U

(
RAVE

p

)
. (14)

Hence, just like for θ, a positive value of ϕ indicates a better performance of the CAY-strategy.
Since the developments of θ and ϕ over time are almost identical, we limit ourselves to

showing the results for θ in Figure 5, while the results for ϕ can be found in Appendix A.4.
The baseline and top-10% specification were basically on the same level between 40 and 80 basis
points for a long time, before starting to decay down to almost zero by the end of 2019. The
unfiltered specification also exhibits a decline after the financial crisis, but having never exceeded
40 basis points, this decay appears less pronounced.

Figure 6 shows the cumulative performance of the three portfolios for having invested 1
U.S.-Dollar at the end of 1966. Until the financial crisis, all three CAY-portfolios outperformed
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Figure 5: The plot shows the risk-adjusted abnormal return, θ, for the baseline (black), top-10% (blue) and
unfiltered (orange) specification. The sample period is 1952:1-2019:4, except for ĉayunfil

t it is 1960:3-2019:4.

the AVE-strategy (dashed line). Since then the baseline and top-10% specification were almost
always invested in the risk-free asset due to the negative development of cay exhibited in Figure 2.
At the same time, the AVE-strategy invested roughly about two-thirds into the risky asset and
by that closed the gap to the CAY-portfolios. When comparing them to the market itself, both
the baseline and top-10% specification performed remarkably well until the financial crisis, in
fact outperforming the market for most times. But again, since the financial crisis this has
changed dramatically leading to a market portfolio value more than three times as high as those
of the CAY-portfolios.

Figure 6 also illustrates that we do not only see the decay of cay in the decline of the
performance measures θ and ϕ but also directly in the recent stagnating portfolio value of
the CAY-strategy when compared to the AVE-strategy and even more so against the market
portfolio. We therefore conclude that the decay of cay also holds up when assessing the economic
significance of cay and that it is not merely a feature of statistical considerations.

5 A structural shift in the cointegration relation

Having documented the substantial decay of cay in the previous part, this section sheds light
on the origin of the declining forecasting power. Recall again, that cay is expected to be a viable
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Figure 6: Portfolio values of the baseline (black), top-10% (blue) and unfiltered (orange) CAY-strategy when
investing 1 U.S.-dollar at the end of 1966. The gray line represents an investment in the market portfolio only,
whereas the dashed line resembles the AVE-strategy.

predictor for stock market returns since it is derived as the residual from the (single) cointegration
equation between consumption, aggregate wealth and labor income. The assumption of a stable
equilibrium relationship may be justified from the rationale of economic theory as invoked by
Lettau and Ludvigson (2001), who argue that the parameters in cay are steady state wealth
shares which are perfectly known to an agent in equilibrium. Our previous section on results
followed this reasoning in the sense that we employed cay without questioning its properties as
stationary cointegrating residual. However, the existence of a stable equilibrium relationship is
eventually an empirical question, which we investigate in more detail in this section. Testing
cointegration relations requires a number of modelling choices on the part of the econometrician,
such as the existence of trends, the number of lags and allowance of intercepts. We first conduct
different cointegration tests and analyze the results of the Vector Error Correction Model.

5.1 Stability of the cointegrating coefficients

In their reply to Brennan and Xia’s (2005) criticism of a ‘look-ahead bias’ incorporated into
cay, Lettau and Ludvigson (2005b) emphasize the importance of using the full available sample
to estimate the cointegrating coefficients and not just a subsample that contains only information
available up to a certain point in time. We take Lettau and Ludvigson (2005b) at face value and
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thus estimate β̂a and β̂y from equation (10) using the full available sample from 1952:1-2019:4
and report results in Panel A of Table 5.

Panel A: Cointegrating parameters

this paper LL2001 HL2006 DC2010

Sample 52:1-19:4 52:4-98:3 52:4-02:4 1946-2006

β̂a 0.035 0.310∗∗∗ 0.275∗∗∗ 0.274∗∗∗
(0.987) (11.700) (27.500) (11.417)

β̂y 0.906∗∗∗ 0.590∗∗∗ 0.616∗∗∗ 0.684∗∗∗
(23.950) (23.920) (61.600) (28.500)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel B: Phillips and Ouliaris (1990) cointegration tests

1952:1-1998:3 1952:1-2019:4

Statistic Lags p-value Statistic Lags p-value

-2.780 1 0.3462 -1.443 1 0.9084

Panel C: Vector Error Correction Model

1952:1-1998:3 1952:1-2019:4

∆ct ∆at ∆yt ∆ct ∆at ∆yt

∆ct−1 0.211∗∗ 0.096 0.486∗∗∗ 0.334∗∗∗ 0.238 0.626∗∗∗
(2.602) (0.370) (3.139) (5.327) (0.905) (4.737)

∆at−1 0.071∗∗∗ 0.240∗∗∗ 0.081∗ 0.053∗∗∗ 0.164∗∗∗ 0.052
(2.968) (3.137) (1.769) (3.548) (2.599) (1.627)

∆yt−1 0.064 -0.154 0.021 0.044 -0.314 -0.312∗∗
(1.395) (-1.049) (0.240) (1.382) (-1.007) (-1.980)

ĉayt−1 -0.020 0.167∗∗ 0.020 0.004 0.020 0.102
(-0.931) (2.482) (0.504) (0.373) (0.458) (1.451)

R̄2 0.171 0.065 0.096 0.221 0.020 0.102

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: The table reports the coefficient estimates of vector error correction models (VECM) for two different
sample periods specified in the first line. Ordinary t-statistics appear in parentheses.

Column one reports our results (already shown in Table 2) and contrast them with the
corresponding results in Lettau and Ludvigson (2001), Hahn and Lee (2006), and Della Corte
et al. (2010). Strikingly, our most recent results differ remarkably from previous findings.3

While β̂y shows similar levels of significance, the coefficient itself is larger. Vice versa, β̂a is
smaller by an order of magnitude and entirely lost its strong significance (Lettau and Ludvigson
(2001) report t-stats of more than eleven). Thus, the cointegrating regression leaves us with the

3Note, that by restricting our data to the same samples as in these papers, we are able to replicate their
results.
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conclusion that asset wealth is not able to significantly explain the variation of consumption.
Furthermore, standard cointegration tests (e.g., Engle and Granger (1987); Phillips and Ouliaris
(1990); Johansen (1988, 1991)) that take no cointegration as the null hypothesis fail to reject the
null in neither the full sample nor different subsamples, as can be seen in Panel B of Table 5 and
in more detail in Appendix A.5.4 We are thus not able to replicate the test results from Lettau
and Ludvigson (2001).5 Interestingly, in the latest assessment of cay in Lettau and Ludvigson
(2019), they only report results from not being able to reject the null of cointegration. Thereby
following the argument of e.g. Ogaki and Park (1997), that taking the null of no cointegration
may have low power.
To directly assess the stationarity, we conduct Phillips and Ouliaris (1990) residual based
cointegration tests of the constructed cay measure and report results in Panel B of Table 5.
We are far from being able to reject the null of a unit root and thus cannot confirm that cay

appears to be stationary.
Finally, to assess the short-term dynamics of the cointegrating relationship, we report the
results of estimating the Vector Error Correction Model with data up to 1998:3 (left side) and
up to the most recent observations (2019:4, right side) in Panel C of Table 5. The coefficient
of interest is the impact of ĉayt−1 on ∆at. Replicating the results of Lettau and Ludvigson
(2001), it is strongly significant with a value of 0.167 in the sample until 1998:3 and shows
transitory movements in asset wealth rather than consumption or labor income. However,
ĉayt−1 is far from significant (t-stat of 0.458) from the perspective of most recent data.
Consistent with the results from the cointegrating regression in Panel A, it leads to the con-
clusion that cay does not (or, no longer) predict subsequent (transitory) changes in asset wealth.

To elaborate further on the structural shift, we re-estimate the cointegrating relationship in
an expanding window for every quarter beginning in 1967 and report results for β̂a,t and β̂y,t

over time in Figure 7. We find stable values for β̂a,t of roughly 0.275 from the mid 1980s to the
late 1990s, from which point on it steadily declined. Since the cointegrating parameters should
add up to approximately one, β̂y,t shows the mirror behavior with an increase towards values
close to one from the perspective of most recent data. This result is essentially the econometric
confirmation of what can be observed from the development of the original data as illustrated in
the upper panel of Figure 1. After detrending the consumption, asset wealth and labor income
series, we can observe that, beginning with the late 1990s, asset wealth behaves increasingly

4As pointed out in the introduction to this section, cointegration tests are subject to different modelling
choices. We stick to the specification, where we allow a linear trend in the data (but none in the cointegration
relation) and an intercept in the cointegration relation. We discuss the particular role of the deterministic
time trend in the cointegration equation in more detail in the later subsection 5.3. The Johansen (1988, 1991)
cointegration test can usually be chosen among five alternative specifications. In Appendix A.6, we report results
for the number of cointegrating relationships within all five specifications for comparison. In line with Koop et al.
(2008), we find substantial differences among them, which further illustrates the model uncertainty.

5Our findings are in line with Rudd and Whelan (2006).
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Figure 7: Cointegrating parameters for asset wealth (red) and labor income (green) quarterly re-estimated. The
dashed lines represent the corresponding confidence bands of ± 2 standard errors. The sample period is 1952:1-
2019:4.

detached from its alleged long-run relationship with consumption and labor income.
This result may raise several issues. First, the sustained shift in parameters opens the question
of allowing for a deterministic time trend in the cointegrating relationship. Second, the observed
shift may be driven by changes in the composition of the consumption measure. The latter point
has been put forward in Lettau and Ludvigson (2019), who propose to switch from NDS to PCE
as consumption series. We address both issues in subsequent sections, but already note that it
will not affect our main results.
A third issue refers to which cointegrating relation shall be taken as the relevant one. From the
pure econometrician’s perspective (and in line with the argumentation of Lettau and Ludvigson,
2005b), parameter estimates from the most comprehensive data sample should be used. From
economic theory consideration, one may argue however, that some equilibrium relationship has
to exist and maybe the Lettau and Ludvigson (2001) parameters do best represent it. We
therefore ask, how holding fixed a set of parameters influences the predictive ability of cay over
time. In contrast to our previous analysis of Section 4.2, where we re-estimated the cointegrating
parameters sequentially in the expanding window, we will now fix it – being fully aware that
it is subject to the ‘look-ahead bias’ discussion of e.g. Brennan and Xia (2005). We use two
parameter sets: The most recent one (i.e. parameter β̂a, and β̂y from column one in Table 5),
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and the one from Lettau and Ludvigson (2001) (i.e. column two in Table 5). We report the
coefficients from the predictive regression of (12) in both cases in Figure 8. As known from

Figure 8: Both plots show the period wise re-estimated coefficient estimate of ĉayt in quarterly forecasts of excess
returns accompanied by its 95% confidence band based on Newey and West (1987)-standard errors as the dashed
lines. The upper plot represents the results using the cointegrating parameters estimated using the full sample
from 1952:1-2019:4, while the bottom plot uses the cointegrating parameters from the sample 1952:1-1998:3.

Lettau and Ludvigson (2001), their parameter set worked well for (in-sample) prediction until
2000. However, the lower panel of Figure 8 shows that even by arguing that this parameter set
is the right one (and therefore holding it fixed), we find the same decay in forecasting power.
Vice versa, by using the most recent parameter set, we find that cay would have never worked.
The upper panel indeed shows that the predictive coefficient has been insignificant for the entire
sample and would not have shown predictability even in the period prior to 1998.

5.2 Most recent cay tends to be negative – Explaining poor OOS perfor-
mance

The shift in the cointegration coefficients casts serious doubt on the forecasting power of
cay in general. In particular, it can also explain the surprisingly large difference between in-
sample and out-of-sample performance. Recall from Figure 3 that cay appeared to work well
in-sample until 2000, but that in the same period, OOS results were very poor and even worse
thereafter (see Figure 4). As we documented in the previous section, the coefficient on wealth β̂a
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shows a declining pattern in an expanding window. So, for the estimation of cay as the residual
ĉayt = ct − β̂aat − β̂yyt at each endpoint in the expanding window, it will tend to overestimate
the impact of wealth and therefore tend to be biased to negative numbers. To investigate this
reasoning empirically, we re-estimate cay in the fourth quarter of each year from 1966 to 2019
and retain values only for the last three most recent years. We further subdivide the sample
in three groups with the first spanning the first 18 years from 1966-1983, the second spanning
the time period from 1984-2001, and the last spanning the time period from 2002-2019. Thus,
each group contains a total of 216 observations. Results are plotted in Figure 9 which shows the
distribution of the sequentially most recent estimates of cay (in standardized units). We observe

Figure 9: We re-estimate ĉayt every fourth quarter from 1966:4 to 2019:4. We then plot histograms of the last
three years of each ĉayt for three equally sized subsamples of 18 estimations. The solid line indicates the respective
kernel density estimate assuming a normal distribution. In gray we have the estimations from 1966-1983, red
represents the years 1984-2001 and green indicates the time period from 2002-2019. The samples always start in
1952:1.

that in the first and second sub-sample, the latest cay-estimates were roughly equally likely to
be positive or negative. However, when looking at the third sub-sample (i.e. from 2002 onward),
we find a distribution that is highly shifted to negative values – in fact, cay was almost always
negative and on average more than one standard deviation away from the historical mean. This
result confirms the above reasoning, that the parameter shift will bias cay to the downside.
Note that according to the underlying theory, a low consumption-to-wealth ratio (i.e. negative
cay) would signal that the representative agent anticipates low returns on wealth in the future
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(which is why she reduces current consumption). Therefore we expect a positive coefficient on
cay in the predictive regression. In the evaluation of the OOS performance, the most recent pre-
diction of the market return will be compared to the realized return. If cay is biased downwards,
also the predicted return will be biased downwards and therefore deliver poor results against
the realized returns.
In economic terms, a negative cay and therefore a low market return forecast, will imply that the
asset allocation of the representative agent should be tilted away from the risky asset. This is ac-
tually confirmed in Figure 6, which has already shown that from 2000 onwards, the cay portfolio
was almost always invested in the risk-free asset and therefore underperformed dramatically.

5.3 The role of a deterministic time trend

In this subsection, we revisit the possibility that the structural shift in the cointegrating
coefficients could be addressed through allowing for a deterministic time trend. This is ulti-
mately a question of model choice regarding the cointegrating relationship, an issue extensively
discussed in Koop et al. (2008) which we pick up in Appendix A.6. The relevance of an omitted
time trend in the cointegrating relationship was first brought to attention by Brennan and
Xia (2005), who argue that a mechanistic variable, which they call tay, that simply replaces
consumption with calendar time in the estimation of the cointegrating relationship, predicts
asset returns at least as good as cay.6 A more detailed analysis of the time trend is provided
by Hahn and Lee (2006), who show that that the restricted version of cay (i.e. without time
trend) from Lettau and Ludvigson (2001) is nothing but the sum of a bias component and the
unrestricted cay estimated with a deterministic time trend. Their main finding is that the time
trend takes away a substantial part of the forecasting ability of cay, or in other terms, that the
unrestricted cay (with trend) does show substantially less forecasting power.

To investigate the role of the time trend, we follow Hahn and Lee (2006) and augment
equation (9) by calendar time t and derive cay from ĉayt = ct − π̂ t − β̂aat − β̂yyt, where π̂ is
the estimated coefficient on time t. We estimate the cointegration regression sequentially in an
expanding window and report the time variation of the coefficients π̂t, β̂a,t, and β̂y,t in Figure 10.
We find that the deterministic time trend was strongly significant until 2010 (with t-values of
more than 6), but sharply dropped thereafter to become insignificant from the perspective of
most recent data.7 The inclusion of the time trend has the remarkable effect that the coefficient

6In their strong reply to Brennan and Xia (2005), Lettau and Ludvigson (2005b) not only argue that from
a theoretical standpoint, a meaningful long-run equilibrium between consumption, aggregate wealth and labor
income does not allow for a deterministic trend. They also claim that tay contains more economic content than
admitted by Brennan and Xia (2005), by the mere fact that tay is nothing but a proxy for cay due to a large
part of the variability of consumption being governed by a simple deterministic time trend. A forward-looking
consumer anticipates this relationship which brings it perfectly in line with the model assumptions.

7As of 2019:4, π̂ = 0.024 with a t-stat of 0.303. Estimation by DLS.

28



Figure 10: Cointegrating parameters for time trend (black), asset wealth (red) and labor income (green) quarterly
re-estimated. The dashed lines represent the corresponding confidence bands of ± 2 standard errors. The sample
period is 1952:1-2019:4.

on wealth, β̂a,t, would have never been significantly different from zero, which in turn leads to the
result that cay, estimated from the unrestricted model, would have never displayed forecasting
power. This result reinforces the findings of Hahn and Lee (2006) and their conclusion that the
good (in-sample) forecasting performance of cay was (at least partly) due to omitting a time
trend. However, note that the situation changes dramatically after 2010, where the inclusion of
the time trend is no longer warranted from an econometric point of view. Furthermore, note that
the decline of the time trend goes along with a substantial increase in β̂y,t, i.e. the coefficient
on income after 2010. So, the time trend apparently absorbs the impact of wealth prior to
2010, but we still observe a similar structural shift as already documented above in Figure 8.
In sum, the analysis of a time trend reveals some irony of history. Prior to 2010, cay showed
good (in-sample) forecasting power, but was subject to the potential criticism that it earned
its predictability due to the omitted (but statistically significant) time trend. Since 2010, the
data does support the theoretically motivated assumption of omitting a time trend, but even
the restricted cay no longer displays forecasting power.
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5.4 The Covid-19 pandemic episode

We deliberately ended our sample in 2019:4 and excluded observations that were impacted
by the Covid-19 pandemic, hitting the U.S. in the first quarter of 2020. In this section, we
illustrate the impact of the pandemic-affected observations on cay and its predictive ability.
Recall again that a low cay is assumed to predict low future returns, since the representative
agent reduces consumption in anticipation of lower growth rates for wealth. It is therefore in-
structive to first look at the development of the consumption and income time series during the
Covid-19 episode, whose quarterly growth rates are shown in the upper two panels of Figure 11.
It is more than obvious that the pandemic-affected quarters display extraordinary behavior.
In 2020:1 and 2020:2, consumption growth dropped at unprecedented magnitude while income
spiked upwards in 2020:2 and 2021:1. A decline in consumption (i.e. the numerator) together
with an increase in income (i.e. the denominator) propelled the consumption-wealth ratio eight
standard deviations below its historic mean (see third panel in Figure 11). Within the interpre-
tation of the theory, it would be a signal that the representative agent has massively reduced
consumption because she had anticipated extraordinarily low future returns. While it is true
that the pandemic induced a negative shock on growth expectations, a closer inspection of the
episode clearly shows that the decline in consumption is primarily due to government-imposed
shutdowns, while the huge spike in income can be explained by the substantial transfer payments
that were made in the context of various rescue packages. Therefore, although the sign would
be correct, it is hard to argue that during the Covid-19 episode cay is able to forecast future
returns on the basis of its theoretical basis. Consumption declined rather due to the inability
to spend than due to anticipated low growth rates.

In sum, observations that are affected by the Covid-19 pandemic are subject to circumstances
(economy shutdown, transfer payments) that are not captured by the theoretical model assump-
tions. Furthermore, by their extraordinary order of magnitude, these observations massively
affect the proper estimation of ĉayt. Unsurprisingly, this leads to a complete disappearance
of any stock return predictability. Therefore, we limit ourselves to the sample ending in the
fourth quarter of 2019. Moreover, when addressing the decay of cay, we always refer to the
fundamental changes in the underlying cointegrating relationship and the consequential decline
in predictability within this sample.

6 Robustness

6.1 Avoiding a two-step approach

Confronted with the criticism that the construction of cay as cointegrating residual involves
the alleged ‘look-ahead bias’, Lettau and Ludvigson (2005b) argue that the same results can also
be obtained by avoiding this two-step approach and directly estimating a multivariate regression
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Figure 11: The two plots in the top show the (log) growth rates of consumption and labor income, respectively.
The bottom plot shows ĉayt in standardized units. The sample period is 1952:1-2022:4.

of excess returns on consumption, aggregate wealth and labor income. This procedure is valid
under the assumption that the series are cointegrated and ensures that there are no future
observations in use. Taking for the moment an agnostic stance on the underlying assumption of
cointegration, we investigate whether the decay of cay, i.e. the disappearance of the forecasting
ability of cay is also found from the direct multivariate predictive regression. In line with Lettau
and Ludvigson (2005b), we estimate

r̃t,H = α+ γc ct + γa at + γy yt + εt,H (15)

and report results for the full sample in Table 6 for horizons up to H = 20 quarters. Clearly,
there are no significant results for any of the three regressors over any horizon. Moreover, the
coefficient estimates for consumption in the first row are especially for the shorter horizons
very close to the ones for ĉayt from Table 4. This is exactly what we would asymptotically
expect in large samples. Taken together, the results in Table 6 document that from most recent
data, future returns cannot be predicted over any horizon from the direct multivariate regression.

To illustrate the temporal development, we plot the recursively re-estimated coefficient esti-
mates γc, γa, γy of consumption, aggregate wealth and labor income respectively from quarterly
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Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ct 0.238 0.468 0.848 1.689 2.455 3.446 4.320
(1.060) (1.024) (0.708) (0.741) (0.696) (0.735) (1.009)

at -0.015 -0.054 -0.158 -0.315 -0.426 -0.544 -0.765
(-0.323) (-0.597) (-0.570) (-0.469) (-0.483) (-0.398) (-0.850)

yt -0.211 -0.388 -0.637 -1.277 -1.887 -2.696 -3.275
(-0.926) (-0.870) (-0.538) (-0.596) (-0.604) (-0.756) (-0.930)

R̄2 -0.006 -0.002 0.007 0.027 0.041 0.064 0.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: The table reports regression estimates for ct, at and yt and adjusted R2 statistics from forecasts of
H-period ahead excess returns spanning different horizons from one quarter up to five years. Newey and West
(1987) corrected t-statistics appear in parenthesis. The sample period is 1952:1-2019:4.

forecast regressions in Figure 12.

Figure 12: The plot shows the coefficient estimates of consumption (blue), aggregate wealth (red) and labor
income (green) γc, γa, γy accompanied by their 90%-confidence bands based on Newey and West (1987)-corrected
standard errors. The sample period is 1952:1-2019:4.

We find the by now familiar pattern, that until around 2005, coefficient estimates are sig-
nificant and roughly stable. From then on all three coefficients tend to approach zero and are
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insignificant from around 2010. The coefficient on consumption γc (blue line) shows an al-
most identical pattern as the coefficient on ĉayt itself as shown in Figure 3. This result is in
line with asymptotic theory which implies that both approaches should be the same in large
samples. These results confirm that the decay of cay is not simply an artefact of a two-step
estimation procedure but directly translates to the underlying series that form cay through their
cointegrating relationship.

6.2 Using PCE as consumption flow measure

As mentioned in Section 3 already, in a revision to their original paper on cay, Lettau and
Ludvigson (2019) argue that in light of a continuously declining ratio of NDS over PCE over
the last four decades, it is meanwhile more appropriate to consider PCE as the measure of
consumption in the estimation of ĉayt. So far, we purposely used NDS to track the historical
development of cay and its forecasting ability, and to be comparable to prior literature. As a
robustness check, we will repeat (part of) our analysis by using PCE consumption instead of
NDS. To avoid any confusion, we will denote the consumption measure in use by a superscript
from here on out. The estimated cointegrating parameters using PCE within the full sample
turn out to be

ĉayPCE
t = cPCE

t − 0.232
(7.67)

at − 0.788
(24.22)

yt, (16)

with t-stats in brackets below coefficient estimates. Using ĉayPCE
t as predictor, we summarize

multiple horizon (in-sample) predictive regression results in Table 7. Overall, results based on

Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉay
PCE
t 0.438 0.937∗ 2.017 4.202∗ 5.710∗∗ 6.935∗∗∗ 7.759∗∗∗

(1.617) (1.855) (1.480) (1.830) (2.116) (3.462) (3.303)
[0.007] [0.019] [0.047] [0.114] [0.156] [0.193] [0.188]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: The table reports forecasting regression estimates for ĉayPCE
t . Forecasts span different horizons from

one quarter up to five years. Newey and West (1987) corrected t-statistics appear in parenthesis and adjusted
R2 statistics in square brackets. The sample period is 1952:1-2019:4.

PCE are better than with NDS data. The cointegrating coefficient on wealth is larger and
significant although showing also a decline in the last ten years. Returns up to H = 8 quarters
are not reliably predictable from ĉayPCE

t , but become significant for longer horizons. While
being better, we still find a comparable decay in the forecasting performance as illustrated in
Figure 13, which plots the coefficient estimate over time in the predictive regression for our
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baseline, top-10% and unfiltered specification, each estimated using PCE instead of NDS. It is
the exact analogue of Figure 3. For the baseline and the unfiltered specification the picture
is almost the same. After a long-lasting period in which both the estimate with its economic
impact, as well as the adjusted R2 statistics, stayed more or less stable on a certain level, they
began to decay around 2002/03. This observation is almost identical to the case where NDS
is the consumption measure. The only notable difference occurs in the case of the top-10%
specification. Here, the decay is still present but less pronounced. For example, the coefficient
estimate of the full sample is still significant and also the economic impact is much higher at
126 basis points, compared to only 87 in the baseline specification. This is interesting, since
until the early 2000s, both were almost exactly at the same level. The fact that the top-10%
specification yields much stronger forecasting results is again a consequence of the very different
behavior of consumption and labor income on the one side and aggregate wealth on the other
especially after the financial crisis. It shows that adjusting the consumption-wealth ratio such
that it captures the marginal investor’s behavior is a meaningful improvement.

The general finding that cay behaves comparatively better but otherwise similar for PCE
instead of NDS as the consumption measure, and most importantly that it exhibits the above
documented decay, also holds up when considering its out-of-sample as well as its economic
significance. All of this taken together leads us to conclude that the decay of cay is not merely
a result of a measurement issue with consumption.

6.3 Disaggregating asset wealth

Sousa (2010) proposes an improved version of cay, called cday, where aggregate (asset)
wealth is separated (or disaggregated) into financial wealth and housing wealth. He argues that
it is mainly financial wealth that captures transitory movements in the long-run cointegrating
relationship between consumption, asset wealth and labor income, and shows that over a sample
period of 1975:1-2008:4, cday slightly outperformed cay in terms of forecasting ability in the U.S.
The overall methodology in estimating cday is analogous to the one for cay from Lettau and
Ludvigson (2001) and only splits asset wealth, At, up into the sum of financial wealth, Ft, and
housing wealth, Ut. We follow that approach and use four leads and lags of the first differences
of financial wealth, housing wealth, and labor income in the DLS specification of cday. The
cointegrating parameter estimates for ĉdayt obtained in this way are

ĉday
NDS

t = cNDS
t + 0.019

(-1.03)
ft − 0.093

(6.09)
ut − 0.856

(29.96)
yt,

ĉday
PCE

t = cPCE
t − 0.109

(5.61)
ft − 0.117

(8.32)
ut − 0.800

(29.70)
yt,

for our sample period 1952:1-2019:4. A comparison with the results from Sousa (2010) with
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Figure 13: Both plots show results from quarterly re-estimated one-quarter ahead forecast regressions of excess
returns on ĉayt (black), ĉaytop10

t (blue) and ĉayunfil
t (orange) with PCE as the consumption measure. The upper

plot represents the coefficient estimates as the solid lines accompanied by their respective 90%-confidence band
based on Newey and West (1987) standard errors as the dashed lines. The bottom plot shows the impact of a
one-standard deviation increase in cay on one-quarter ahead excess returns in basis points as the solid lines on
the left axis and the adjusted R2 statistics on the right axis. The sample period is 1952:1-2019:4, except for
cayunfil

t it is 1960:3-2019:4.

coefficients of 0.16, 0.02 and 1.02, however, is somewhat delicate due to the very different sample
period.

In general, cday behaves similarly to cay, although the higher sensitivity of cday towards
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changes in housing wealth became distinctly visible during the course of the financial crisis of
2007/08 when housing wealth was deviating massively from its long-term trend with consump-
tion, financial wealth and labor income. Figure 14 shows ĉdayt over our full sample period
in comparison to ĉayt for both (baseline) consumption measures. The results of our forecast
regressions using cday are presented in Table 8.

Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉday
NDS

t 0.285 0.560 0.994 1.883 2.477 3.102 2.996
(1.225) (1.138) (0.805) (0.732) (0.571) (0.605) (0.586)
[0.001] [0.005] [0.010] [0.022] [0.030] [0.041] [0.030]

ĉday
PCE

t 0.471 1.023∗ 2.244∗ 4.728∗∗ 6.318∗∗ 7.464∗∗ 7.682∗∗
(1.630) (1.751) (1.686) (2.137) (2.381) (2.513) (2.293)
[0.008] [0.021] [0.053] [0.127] [0.166] [0.194] [0.162]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: The table reports forecasting regression estimates for ĉday
NDS

t and ĉday
PCE

t . Forecasts span different
horizons from one quarter up to five years. Newey and West (1987) corrected t-statistics appear in parenthesis
and adjusted R2 statistics in square brackets. The sample period is 1952:1-2019:4.

We see that the coefficient estimates and significance levels are very much comparable to
the results for ĉayt. The same holds when assessing the in-sample and out-of-sample power of
cday. This shows that even though splitting up asset wealth into financial and housing wealth
does slightly improve the forecasting ability of cay, it cannot eliminate nor explain the decay of
c(d)ay.

6.4 Including volatility into the forecasting regression

In his paper, Guo (2006) shows that the forecasts of quarterly-ahead excess returns based
solely on cay suffer from an omitted variable problem. He includes aggregate stock market
volatility, σ2

m, into the forecast regression to get much stronger results for both the coefficient
estimate of cay as well as the explained variation in terms of R2 statistics.8 He mainly attributes
this finding to the fact that while cay and σ2

m are negatively correlated to one another, they
are both positively correlated with future stock returns. He furthermore shows that including
the stochastically detrended risk-free rate, labelled rrel, into the forecast regressions yields
significant estimates for all three variables and leads to an even higher R2 statistic of 16.3% for
the full sample of 1952:3-2002:4. These findings are much stronger when taking only the first
half of the sample into account. Especially the finding that rrel has some further explanatory

8Similarly strong results are found in the later work of Guo et al. (2013).
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Figure 14: The plot shows ĉayNDS
t and ĉday

NDS

t in black and green as the solid lines. The dashed lines represent

ĉayPCE
t and ĉday

PCE

t , respectively. The sample period is 1952:1-2019:4.

power does not hold in the second half of the sample, whereas the omitted variable problem due
to excluding σ2

m seems to still exist.
We address the omitted variables problem and follow Guo’s (2006) approach by adding the

variance of our market portfolio to the forecast regressions. We compute σ2
m by taking the sum of

the squared daily log returns of the CRSP NYSE/NYSE MKT/NASDAQ/Arca Value-Weighted
Market Index for each quarter. The results for the full sample are presented in Table 9. We also
experimented with including the relative bill rate, i.e., rrel, into the forecasts but did not find
any significant results for rrel itself, or any sizeable improvement in R2 statistics. Therefore, we
decided to only incorporate σ2

m into our forecasts for the remainder of this section.9

In principal, the results including stock market volatility into the forecast regressions are just
as bad as the ones for only using cay as a predictor variable. This at first sight contrary finding
to Guo (2006), leads us to believe that the decay of cay is still present even when adding stock
market volatility to our forecast regressions. Indeed, when again re-estimating the quarterly

9Different from Guo (2006), we did not adjust downward observations with an unusually high amplitude of
realized stock market variance. The main reason for that is, next to the somewhat arbitrary decision which
observations should be adjusted downward, that our findings are simply not sensitive to downward adjustment.
By that we mean that we indeed do get statistically stronger results when adjusting downward, but our main
interest lies in the decay of cay which is given in almost the same way, independent of downward adjustment.
We therefore spare ourselves the decision which observations should be adjusted downward.
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Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉayt 0.238 0.453 0.794 1.502 2.137 2.949 3.481
(1.072) (1.009) (0.670) (0.654) (0.654) (0.945) (0.973)

σ2
m,t 0.178 1.216 1.886 2.978 1.875 2.866 5.249∗∗

(0.215) (1.478) (1.529) (1.557) (0.854) (1.368) (2.518)

R̄2 -0.003 0.009 0.015 0.031 0.031 0.056 0.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 9: The table reports forecasting regression estimates for ĉayt and σ2
m,t. Forecasts span different horizons

from one quarter up to five years. Newey and West (1987) corrected t-statistics appear in parenthesis and adjusted
R2 statistics in square brackets. The sample period is 1952:1-2019:4.

Figure 15: The plot shows the coefficient estimates of ĉayt (black), ĉaytop10
t (blue) and ĉayunfil

t (orange), accom-
panied by their 90%-confidence bands as the dashed lines, from quarterly forecast regressions of excess returns
that also include the realized stock market variance σ2

m,t. The sample period is 1952:1-2019:4, except for cayunfil
t

it is 1960:3-2019:4.

forecasts step by step, we get the already familiar picture of a strongly significant coefficient
estimate in the past that has declined sharply over the last roughly 15 years, which is illustrated
in Figure 15. We can thus conclude that the decay of cay is not only robust against changes in
the methodology in the estimation of ĉayt as seen above, but also not affected by an omitted
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variable problem in the forecast regression itself.

7 Conclusion

In this paper we show that the ability of the consumption-wealth ratio cay to predict future
market excess returns has dramatically declined over more than the last ten years both in-sample,
out-of-sample as well as in terms of economic performance. In an attempt to improve the basic
construction of cay, we propose two alternative derivations: First, we take up the argumentation
put forward in e.g. Lettau et al. (2019), that due to wealth inequality, the representative agent
may be better captured by the richest households. Therefore, we determine consumption and
wealth data for the top-10% of richest households. Second, we make use of an unfiltering process
of the consumption data in order to recover richer time variation in the spirit of Kroencke (2017).
Neither approach is able to substantially alter our main conclusion. Although in particular the
top-10% implementation is able to yield some improvement in the forecasting ability, we still find
a pronounced decline in predictability over the last 10-15 years. We conduct extensive robustness
checks, but neither the avoidance of estimating the cointegrating residual, nor the decomposition
into financial and housing wealth, nor the inclusion of potentially omitted variables changes our
results qualitatively. Arguably the best improvement is found for estimating cay from PCE
instead of NDS consumption data and adjusting for the top-10% households, for which at least
for longer horizons predictive regressions still deliver significant (in-sample) results. However,
although significance levels are better, we do observe the same declining pattern.

We identify the source of this decay to be a structural shift in the cointegrating relationship
that governs the comovement between consumption and wealth. In particular asset wealth ap-
pears to be increasingly detached from its long-run relation with consumption and labor income
over at least the last two decades. This behavior implies that the cointegrating parameters of
asset wealth and labor income are increasingly drifting apart. Among others, we show that
this structural shift drives the poor OOS performance as well as the failure to generate utility
gains over the past two decades. We do not take a stance on whether this behavior results from
a long-lasting deviation from a previously reached equilibrium or convergence towards another
equilibrium, which may be a question for future research. The bottom line of our contribution is
the comprehensive documentation of the recent decay of cay as a meaningful predictor of asset
returns, which casts doubt if a predictor derived from the representative agent’s intertemporal
budget constraint can meaningfully predict future stock market behavior.
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A Appendix

A.1 Other cointegration estimates

Next to the DLS method used throughout the paper when estimating the cointegrating pa-
rameters of the long-run relationship between consumption, aggregate wealth and labor income,
there are also other approaches of getting estimates for said cointegration relation. Table 10
presents these for three other methods, namely simple OLS, Park’s (1992) canonical cointegrat-
ing regression (CCR) and Phillips and Hansen’s (1990) fully modified estimator (FME).

OLS CCR FME

Panel A: baseline specification

β̂a 0.036 0.028 0.028
(1.102) (0.872) (0.876)

β̂y 0.902∗∗∗ 0.910∗∗∗ 0.910∗∗∗

(25.908) (23.786) (23.785)

Panel B: top-10% specification

β̂a 0.073∗∗∗ 0.071∗∗ 0.071∗∗

(2.609) (2.223) (2.235)

β̂y 0.876∗∗∗ 0.878∗∗∗ 0.878∗∗∗

(33.485) (26.570) (26.561)

Panel C: unfiltered specification

β̂a 0.027 0.016 0.017
(0.790) (0.413) (0.418)

β̂y 0.908∗∗∗ 0.920∗∗∗ 0.920∗∗∗

(23.098) (18.234) (18.092)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Cointegrating parameters for standard OLS, Park’s (1992) canonical cointegrating regression and
Phillips and Hansen’s (1990) fully modified estimation. Newey and West (1987)-corrected t-statistics appear in
parentheses.

We see that all methods produce similar cointegrating parameters and by that also closely
related forecasts, due to the fact that ĉayt is being estimated using almost the same parameters.
Table 12 reports the results of forecasts based on the baseline specification using the full sample
period.
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Dependent variable: r̃t,H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉay
OLS
t 0.285 0.560 0.994 1.883 2.477 3.102 2.996

(1.225) (1.138) (0.805) (0.732) (0.571) (0.605) (0.586)
[0.001] [0.005] [0.010] [0.022] [0.030] [0.041] [0.030]

ĉay
CCR
t 0.471 1.023∗ 2.244∗ 4.728∗∗ 6.318∗∗ 7.464∗∗ 7.682∗∗

(1.630) (1.751) (1.686) (2.137) (2.381) (2.513) (2.293)
[0.008] [0.021] [0.053] [0.127] [0.166] [0.194] [0.162]

ĉay
FME
t 0.471 1.023∗ 2.244∗ 4.728∗∗ 6.318∗∗ 7.464∗∗ 7.682∗∗

(1.630) (1.751) (1.686) (2.137) (2.381) (2.513) (2.293)
[0.008] [0.021] [0.053] [0.127] [0.166] [0.194] [0.162]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: The table reports forecasting regression estimates for ĉayt being estimated with OLS, CCR and FME
instead of DLS. Forecasts span different horizons from one quarter up to five years. Newey and West (1987)
corrected t-statistics appear in parenthesis and adjusted R2 statistics in square brackets. The sample period is
1952:1-2019:4.

A.2 Data

Consumption. Consumption is defined in two different ways. One being nondurables plus ser-
vices minus clothing and footwear (NDS). The other is total personal consumption expenditures
(PCE). Data are quarterly, seasonally adjusted at an annual rate and measured in billions of
dollars. Series comprise the period 1947:1–2022:4. The source is the U.S. Bureau of Economic
Analysis, NIPA Table 2.3.5, lines 1, 8, 10, 13.
Each series is separately deflated to 2012-dollars with its respective deflator, see below, before
NDS is computed as the sum of nondurables and services minus clothing and footwear. Series
are transformed in per capita terms and put in the logarithmic form.

Aggregate wealth. Aggregate wealth is defined as the net worth of households and nonprofit
organizations. Data are quarterly, end of period, not seasonally adjusted. Series comprises the
period 1951:4–2022:4. The source is the Board of Governors of the Federal Reserve System,
Financial Accounts, Table B.101, line 40.

Financial wealth. Financial wealth is defined as financial assets (debt securities and loans,
corporate equities, mutual fund shares, deposits, life insurance reserves, pension entitlements,
miscellaneous assets, equity in noncorporate business, and grants and trade receivables) minus
financial liabilities (debt security and loans, trade payables, and deferred and unpaid life insur-
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ance premiums). Data are quarterly, end of period, not seasonally adjusted. Series comprise
the period 1951:4–2022:4. The source is the Board of Governors of the Federal Reserve System,
Financial Accounts, Table B.101, lines 9 and 30.

Housing wealth. Housing wealth is defined as the value of real estate held by households minus
home mortgages. Data are quarterly, end of period, not seasonally adjusted. Series comprise
the period 1951:4–2022:4. The source is the Board of Governors of the Federal Reserve System,
Financial Accounts, Table B.101, lines 4 and 33.

Labor income. Labor income is defined as the sum of wages and salaries (line 3), personal
current transfer receipts (line 16), and employer contributions for employee pension and insur-
ance funds (line 7) minus employee contributions for government social insurance, and taxes.
Employee contributions for government social insurance are defined as personal contributions
for government social insurance (line 25) minus employer contributions for government social
insurance (line 8). Taxes are defined as [(wages and salaries (line 3))/(wages and salaries (line3)
+ proprietor’s income with inventory valuation and capital consumption adjustments (line 9)
+ rental income of persons with capital consumption adjustment (line 12) + personal dividend
income (line 15) + personal interest income (line 14))] ∗ (personal current taxes (line 26)). Data
are quarterly, seasonally adjusted at annual rates and measured in billions of dollars. Series
comprise the period 1947:1–2022:4. The source is the U.S. Bureau of Economic Analysis, NIPA
Table 2.1.

The aggregate wealth, financial wealth, housing wealth and labor income series are all deflated
to 2012-dollars using the PCE chain-type price deflator before being transformed into per capita
terms and put in the logarithmic form.
In the following, we will describe the population series as well as the price deflators used for
that in more detail.

Population. Population is defined as the population series by the BEA, retrieved from FRED,
Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/B230RC0Q173SBEA,
April 5, 2023. Data are quarterly, not seasonally adjusted and comprise the period 1947:1-
2022:4.

Price deflator. The chain-type price deflators for personal consumption expenditures, non-
durables, services and clothing and footwear are quarterly, seasonally adjusted and in 2012-
dollars. The source is the U.S. Bureau of Economic Analysis, NIPA Table 2.3.4, lines 1, 8, 10
and 13.

Inflation rate. The inflation rate is computed from the PCE chain-type price deflator. Series
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comprises the period 1947:2–2022:4.

Interest rate (“Risk-free” rate). The “risk-free” rate is defined as the 3-month U.S. Treasury bills
real interest rate per quarter. Original data are monthly not seasonally adjusted nominal rates
in percent per annum and are converted to a quarterly frequency by computing the simple arith-
metic average of three consecutive months and applying the discount method. The real interest
rates are computed as the difference between nominal interest rates and the inflation rate. The
source of the 3-month U.S. Treasury bill secondary market rate is the H.15 publication of the
Board of Governors of the Federal Reserve System and it comprises the period 1934:1-2022:4.

Asset returns. Asset returns are computed using the CRSP NYSE/NYSE MKT/NASDAQ/Arca
Value-Weighted Market Index. It measures market performance assuming a full reinvestment
of all distributions. The original series is daily. Quarterly returns are computed using the data
from the last business day of each quarter. The series comprises the period 1926:1-2022:4.

A.3 Forecasting consumption growth

The theory centered around equation (4) also allows for the consumption-wealth ratio to
predict future consumption growth rather than asset returns. This translates into the possibility
of cay to predict ∆ct+1 according to (7). To illustrate that this is still not the case, even though
the predictability of asset returns has also vanished, we display the results from H-period ahead
consumption growth forecasts on ĉayt for both NDS and PCE as the consumption measure in
Table 12.

Dependent variable: ∆ct+1 + · · ·+∆ct+H

H = 1 H = 2 H = 4 H = 8 H = 12 H = 16 H = 20

ĉay
NDS
t 0.006 0.014 0.028 0.042 0.067 0.104 0.123

(0.322) (0.296) (0.220) (0.192) (0.264) (0.385) (0.402)
[−0.003] [−0.002] [−0.001] [−0.002] [−0.001] [0.000] [0.000]

ĉay
PCE
t -0.030 -0.036 -0.069 -0.122 -0.190 -0.269 -0.401

(-1.010) (-0.423) (-0.318) (-0.341) (-0.517) (-0.527) (-0.789)
[0.004] [0.000] [0.001] [0.002] [0.005] [0.009] [0.017]

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 12: The table reports coefficient estimates for ĉayt and ĉdayt using both NDS and PCE as the consumption
measure from forecasts of H-period ahead consumption growth. The forecasts span different horizons from one
quarter up to five years. Newey and West (1987) corrected t-statistics appear in parenthesis and adjusted R2

statistics in square brackets. The sample period is 1952:1-2019:4.
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A.4 Performance fee ϕ

Next to the risk-adjusted abnormal return, θ, we also considered the performance fee, ϕ,
when assessing the economic advantage of a cay-based trading strategy in comparison to a
simple historical average strategy. The level of ϕ over time is displayed in Figure 16.

Figure 16: The plot shows the performance fee, ϕ, for the baseline (black), top-10% (blue) and unfiltered (orange)
specification. The sample period is 1952:1-2019:4, except for ĉayunfil

t it is 1960:3-2019:4.

A.5 Cointegration test results

As mentioned in Section 5, the whole theory of why consumption, aggregate wealth and
labor income should be cointegrated, has its weaknesses when being tested empirically. Below
we report test results from Engle and Granger (1987) as well as Phillips and Ouliaris (1990) tests
with various lag specifications. Note that we already provided the Phillips and Ouliaris (1990)
results for one lag in Panel B of Table 5. Furthermore, we also conduct the Johansen (1988, 1991)
procedure that not only tests for stationarity in the residuals of a single cointegrating equation
as the other two procedures do but also for the actual number of cointegrating relationships. The
underlying consumption, aggregate wealth and labor income series are all I(1) and the Johansen
(1988, 1991) tests are therefore valid.
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Lag = 1 Lag = 2 Lag = 3 Lag = 4 5% CV 10% CV

Panel A: Engle and Granger (1987) cointegration tests

-1.466 -1.438 -1.175 -1.032 -3.741 -3.452

Panel B: Phillips and Ouliaris (1990) cointegration tests

-1.443 -1.469 -1.293 -1.244 -3.768 -3.449

Table 13: The table reports the test statistics from Engle and Granger (1987) and Phillips and Ouliaris (1990)
tests for cointegration. The sample period is 1952:1-2019:4.

L-Max Trace H0 = r

Test Statistic 90% CV Test Statistic 90% CV r

Panel A: Lag in VAR Model equal to 1
12.99 18.89 19.71 27.07 0
6.21 12.30 6.72 13.43 1
0.51 2.71 0.51 2.71 2

Panel B: Lag in VAR Model equal to 2
12.74 18.89 19.89 27.07 0
6.80 12.30 7.16 13.43 1
0.35 2.71 0.35 2.71 2

Panel C: Lag in VAR Model equal to 3
13.70 18.89 18.59 27.07 0
4.41 12.30 4.88 13.43 1
0.48 2.71 0.48 2.71 2

Panel D: Lag in VAR Model equal to 4
20.16 18.89 24.60 27.07 0
4.21 12.30 4.44 13.43 1
0.23 2.71 0.23 2.71 2

Table 14: The table reports Johansen (1988, 1991) test results including one to four lags and assuming a linear
trend in the underlying data but not in the cointegrating relationship itself.

A.6 Model uncertainty in cointegration tests

As mentioned in the main body, there are several issues regarding the right model choice
for the cointegrating relationship. On the one hand, theory tells us that a specification with a
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linear trend in the underlying data and only an intercept in the cointegrating relationship is the
most appropriate choice. For that reason, Lettau and Ludvigson (2001) assume this specification
which we follow suit. On the other hand, Koop et al. (2008) show that several model specification
are consistent with the theory, and examine the substantial amount of model uncertainty among
them. Therefore, we also report results on model choice in Table 16 below. The five model
specifications therein are in line with the codes in Koop et al. (2008) and are defined in Table 15.

Code intercept trend trend in data

d = 1 yes yes quadratic
d = 2 yes yes linear
d = 3 yes no linear
d = 4 yes no none
d = 5 no no none

Table 15: The table reports the assumptions on the cointegrating relationship specification by linking them to
the codes used in Koop et al. (2008).

The standard assumption by Lettau and Ludvigson (2001) that we also adopted in this paper
is given by d = 3. In Subsection 5.3 we also discussed the case of d = 2 in more detail.

Lags Test d = 1 d = 2 d = 3 d = 4 d = 5

Panel A: Sample period from 1952:1-2019:4
1 L-Max 0 0 0 1 1

Trace 0 0 0 1 1
2 L-Max 0 0 0 1 1

Trace 0 0 0 1 1
3 L-Max 0 0 0 1 1

Trace 0 0 0 1 1
4 L-Max 0 0 1 1 1

Trace 0 0 0 1 1

Panel B: Sample period from 1952:1-1998:3
1 L-Max 0 0 0 1 1

Trace 0 0 0 1 3
2 L-Max 0 0 0 1 3

Trace 0 0 0 1 3
3 L-Max 0 0 0 1 2

Trace 0 0 0 1 2
4 L-Max 0 0 0 1 2

Trace 0 0 0 1 2

Table 16: The table reports the number of cointegrating relationships using the Johansen (1988, 1991) procedure
with 90% critical values. The five model specifications follow the codes in Table 15.
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What the results in Table 16 again show us is that we have almost no evidence of a cointe-
grating relationship under our standard assumptions.10 This is in line with the results reported
in Table 14. Interestingly, this also holds in the subsample until 1998:3. Clear evidence for only
one single cointegrating relationship is only given in the case where the underlying data are not
assumed to have a trend, i.e., the cases d = 4 and d = 5. This however clearly goes against
the actual observed consumption, asset wealth and labor income series which is why we do not
consider these specifications as suited for our model.

10Except for the L-Max statistic with four lags there is no evidence of cointegration.
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